Selasa, 13 Januari 2015

KURSUS MATLAB ONLINE Skripsi, Tesis, DISERTASI 081219449060



 EXERCISE 2          3X3 MATRIX DIAGONALISATION (part 1)
A' = S-1 . A . S                                                                                                                                             (7)
The transformation matrix S turns A into a diagonal matrix A'.  Once the transformation matrix S has been found, the eigenvectors of A are contained in the columns of the transformation matrix on the right in Eq. 7 and in the rows of its inverse in Eq. 7, S-1. The eigenvalues A are the diagonal elements of A' and the eigenvalue in the nth diagonal element corresponds to the eigenvector in the nth column of S.  Numerical diagonalisation is achieved by bringing the matrix A gradually towards diagonal form using a sequence of similarity transformations.  For symmetric matrices a sequence of orthogonal similarity transformations is used. One such procedure is called Jacobi transformation.  The routine jacobi_trans.c  performs just such a transformation. Its input is the matrix A, the outputs are the eigenvalues in array e[i] and the eigenvectors in matrix v[i][j].  Note that typedef statements have been used for declaration of scalars, matrices and vectors. (For further details, see your course JS 3065 Computational Methods).

12           EXERCISE 3          3X3 MATRIX DIAGONALISATION
Write a programme which calls jacobi and solves the eigenvalue problem for

Calculate the eigenvalues and eigenvectors of this matrix by hand and compare your numerical results with your analytical result.

12.1.1    Exercise 4            Nearly Free Electron Energy Band Structure
The question of what determines whether a material is an electrical conductor, insulator or semi-conductor is of great importance in solid state physics.  The free electron model, where electrons are treated as an ideal Fermi gas, gives good insight into heat capacity and thermal conductivity but fails to explain the electrical conductivity of solids.  It is found that the crystal structure is most important in this problem as Bragg reflections of electron waves within the crystal lead to the formation of energy band gaps, which in turn determine the electrical conductivity of the solid.  The Schrödinger equation for electrons in a ‘1-D crystal’ is
                                                                                                         (8)
 is the eigenfunction for wavenumber k, are the allowed energies and V(x) is a periodic potential energy.  A plot of versus k is called the band structure.  Since the potential energy operator and the eigenfunctions both contain periodic functions they can be expanded in Fourier series.  We will use the complex form of Fourier series to expand the periodic function f(x) = f(x+na)  (a = period, n  is 0, 1, 2, ..)
                                                                                                                        (9)
In the nearly free electron problem we choose to limit the expansion for the potential and wavefunction such that only coefficients with –2  n  2 are nonzero.  Solutions to the Schrödinger equation using such a limited expansion for the wave function are quite accurate provided the magnitudes of the potential energy Fourier components in the problem are much less than the kinetic energies of the electrons.  The expansions for the potential energy and wave functions are
                                             (10a)
                                                                                                         (10b)
The right hand equality in Eq. 10a is valid provided v1 = v-1 and v2 = v-2.  We also choose v0 = 0.  The factor exp[ikx] multiplying each term in Eq. 10b is necessary to make k a Bloch eigenfunction.  (See lecture notes from course JS 3014 Thermal and Electronic Properties).  When the potential and eigenfunction are substituted into Eq. 8, the resulting set of linear equations is

Inspection of the matrix equation above shows that its diagonal elements depend on wave number k.  An energy band calculation using these equations consists of repeated construction of the matrix and computation of its eigenvalues.  The notation Gn in the equations above means 2n/a.  In 1-D the reciprocal lattice consists of points given by k = Gn with n integer.  The equations are given in atomic units in which h bar = e = me = 1.  It will be helpful if you choose units for wavenumbers to be in units of /a so that k = ±1 correspond to the Brillouin zone boundaries for the problem and Gn =2n.
Kami ada di Jakarta Selatan. KAMI MEMBERIKAN KURSUS MATLAB ONLINE - HUBUNGI MASTER ENGINEERING EXPERT (MEE) 081219449060.  Kami membuka kursus Matlab untuk pemula dan mahasiswa atau insinyur yang ingin memperdalam Matlab dan menerapkan dalam bidang teknikal, engineering, rekayasa, dsb. Format bimbingannya tugas-tugas yang bisa membantu Skripsi, Tesis, DISERTASI
Bimbingan dilakukan secara online bisa lewat WA atau email
Dijamin Bisa, atau bisa mengulang kembali. Kami juga dapat membantumembuatkan aplikasi atau program matlab/lainnya. Anda akan dilatih oleh Tim Profesional - HUBUNGI MASTER ENGINEERING EXPERT (MEE) 081219449060.   Email: kursusmatlab@gmail.com


13           EXERCISE 4
Write a programme which contains a function which constructs the 5x5 matrix above as a function of k.  The programme should also call the diagonalisation routine to obtain the eigenvalues of the matrix.

Use your programme to obtain the bandstructure of a solid where all of the Fourier components of the potential are weak (v-2 = v-1 = v1  = v2  =  0.1) and for a solid where some of the Fourier components of the potential are strong (v-2 = 0.3  v-1 = 0.7 v1  = v2  =  0.1).  Compare the band gaps calculated in your programme at the Brillouin zone centre and at its edges with the result from perturbation theory that the nth band gap is twice the nth Fourier component of the periodic potential, e.g. the first gap at k = 1 (in units of /a) is equal to 2 v1.
INTRODUCTION TO MATLAB        10
WHAT IS MATLAB?           11
HISTORY OF MATLAB       12
AN INITIAL EXAMPLE       13
Population Growth           13
SOME FEATURES              15
RUNNING MATLAB          16
Startup Under Unix          16
Startup Under Windows 95/98     16
To Exit   16
HELP & DEMOS  17
Through the Command Window  17
Through the Help Window            17
Through the Help Desk    17
Demonstrations 17
CONTROLLING THE ENVIRONMENT          18
A 2ND EXAMPLE               19
Final Approach   19
MAP GENERATION           20
MAP SMOOTHING            21
MAP CODE          22
mapGen               22
MapPlateau        23
PRINCIPLES OF  “GOOD” PROGRAMS        25
REVIEW               26
MATLAB SYNTAX              27
SOME SIMPLE CALCULATIONS     28
BASIC MATHEMATICAL OPERATORS          29
EXPRESSIONS     30
VARIABLES & ASSIGNMENT          31
THE ANS VARIABLE          32
Examining a Variable’sValue         32
SEMICOLON, COMMA & PERIOD 33
Semicolon           33
Comma 33
Period   33
LAYOUT CONVENTIONS 35
COMMENTS        36
USING COMMENTS          37
COMMENTS & MATLAB HELP       38
SOME USEFUL MATHEMATICAL FUNCTIONS          39
SCRIPT M-FILES  40
Basic Approach using M-Files       40
Naming 40
MATLAB NAME SPACE     41
Matlab Search Path          41
REVIEW               42
MATLAB VARIABLES & DATA TYPES            43
VARIABLES          44
IDENTIFIERS       45
MEANINGFUL IDENTIFIERS           46
Some Examples  46
WEAK TYPING    47
IMPLICATIONS OF WEAK TYPING               48
Advantages         48
Disadvantages    48
SPECIAL (BUILT-IN) CONSTANTS & VARIABLES       49
COMPLEX NUMBERS       50
NAN & INF          51
STRINGS              52
MANAGING VARIABLES   53
clear      53
MANAGING WORKSPACE: LOAD  54
MANAGING WORKSPACE: SAVE   55
REVIEW               56
I/O IN MATLAB  57
BASIC INPUT       58
The Input Statement        58
INPUTTING STRINGS       59
BEHAVIOUR OF INPUT STATEMENT           60
MICRO: AMOEBA EXPANSION      61
MICRO RUN        62
BASIC OUTPUT   63
The disp Statement          63
THE FORMAT COMMAND              64
FORMAT EXAMPLES         65
MORE    66
FILES IN GENERAL            67
Opening & Closing Files   67
FPRINTF               68
CONTROLLING FPRINTF  69
FSCANF 70
PROJECTILE EXAMPLE     71
PROJECTILE CODE            72
PROJECTILE RUN              74
PROJECTILE PLOT             75
REVIEW               76
ARRAYS IN MATLAB 1 – VECTORS               77
MOTIVATION     78
VISUALISING A 1D ARRAY (VECTOR)          79
MATLAB & ARRAYS          80
VECTOR CREATION          81
VECTOR CREATION EXAMPLE       82
ADDRESSING THE ELEMENTS OF A VECTOR            84
COLUMN VS. ROW VECTORS        85
COLUMN VS ROW EXAMPLE         86
SCALAR-ARRAY MATHEMATICS    87
EXAMPLE CEL2FAR.M      88
CEL2FAR RUN     89
ARRAY-ARRAY MATHEMATICS     90
EXAMPLE – BOUNCING.M             91
BOUNCING.M CODE        92
REVIEW               94
MATLAB ARRAYS 2 – MATRICES   95
2D(+) ARRAYS – MOTIVATION      96
VISUALISING 2D ARRAYS               97
VISUALISING 2D ARRAYS EXAMPLE            98
CREATION           99
CREATION EXAMPLE        100
MATHEMATICS OF MATRICES      101
MATHEMATICS EXAMPLE              102
ADDRESSING & MANIPULATION  105
ADDRESSING & MANIPULATION EXAMPLE             106
EXAMPLE – NETWORK TRAFFIC   109
TRAFFIC CODE    110
TRAFFIC EXAMPLE PLOTS              112
SPECIAL MATRICES          113
SPECIAL MATRICES EXAMPLE       114
ARRAY SIZES       115
ARRAY SIZES EXAMPLE    116
MULTI-DIMENSIONAL ARRAYS    117
LINEAR EQUATIONS        118
LINEAR EQUATIONS EXAMPLE     119
REVIEW               120
MATLAB RELATIONAL OPERATORS & BASES           121
MOTIVATION - RELATIONAL OPERATORS               122
BOOLEAN OPERATIONS  123
EXAMPLE – PIECEWISE FUNCTIONS           127
PIECEWISE FUNCTION EXAMPLE 128
NAN & EMPTY ARRAYS    129
BASE CONVERSION          130
BASE CONVERSION EXAMPLE       131
BIT LEVEL OPERATIONS  132
REVIEW               133
MATLAB SELECTION STATEMENTS (IF & SWITCH) 134
MOTIVATION     135
SIMPLE IF            136
EXAMPLES – SIMPLE IF    137
IF-ELSE  138
EXAMPLE – IF-ELSE          139
IF-ELSEIF-…         140
EXAMPLE – IF-ELSEIF…    142
TRUTH TABLES & COMPOUND IFS             143
SWITCH               145
EXAMPLE –SWITCH          147
REVIEW               148
LOOPS IN MATLAB           149
MOTIVATION     150
DEFINITE ITERATION (FOR LOOP)               151
FOR LOOP SCHEMATIC    152
FOR LOOP EXAMPLE        153
FOR LOOP ADDITIONAL  154
INDEFINITE ITERATION (WHILE LOOP)      155
WHILE LOOP SCHEMATIC              156
WHILE LOOP EXAMPLES 157
WHILE VS IF        158
GENERAL LOOPS & BREAK             159
BREAK SCHEMATIC          160
COMBINED (MAJOR) EXAMPLE    161
WORMS RUN     164
LOOP USAGE GUIDELINES             165
LOOP CONTROL 166
COMMON TYPES OF LOOPS          167
LOOPS VS IMPLICIT VECTORISATION         168
LOOPS VS. VECTOR EXAMPLE       169
REVIEW               170
EFFICIENCY & ERRORS    171
MOTIVATION     172
NUMERIC LIMITATIONS 173
Overflow             173
Underflow           174
ROUNDING & CANCELLATION     175
Rounding (Precision)        175
Cancelation (Order of Precedence)            175
WORK-AROUNDS FOR NUMERIC LIMITATIONS     176
For Instance: Comparing Two Numbers    176
ERRORS & DEBUGGING IN MATLAB           177
MATLAB DEBUGGER        178
ORDER OF AN ALGORITHM           179
TIMING IN MATLAB         180
PERFORMANCE PROFILING IN MATLAB    181
PROFILER EXAMPLE         182
GUIDELINES FOR EFFICIENCY       183
Special Cases and Redundant Checking     183
EFFICIENCY: REDUNDANCY & FUNCTIONS             184
Avoid Redundant Computations  184
Minimise Costly Function Usage  184
EFFICIENCY: ARRAYS       185
Minimise Array Referencing          185
Time vs Space     185
EFFICIENCY: LOOP TERMINATION             186
Avoid Late Termination of Loops (Needless Calculations)  186
EFFICIENCY – COMPLICATING ISSUES       187
LOOPING VS IMPLICIT VECTORISATION    188
TIMING EXAMPLE             189
SHELL1 – LOOPING WITHOUT EFFICIENCY              190
SHELL2 – LOOPING EFFICIENTLY 191
SHELL3 – IMPLICIT VECTORISATION          192
REVIEW               193
BASICS OF MATLAB FUNCTIONS  194
MOTIVATION     195
CALLING FUNCTIONS      196
OVERVIEW OF FUNCTION CALL & RETURN PROCESS          197
ON MATLAB'S IN-BUILT FUNCTIONS         198
WHAT MAKES A GOOD FUNCTION – SOFTWARE ENGINEERING PRINCIPLES              199
FUNCTION DECLARATION SYNTAX            200
A FIRST FUNCTION           201
EXAMPLE: TIMING OF FUNCTIONS            202
COMMENTS & FUNCTIONS           203
TOP-DOWN VIEW OF FUNCTION DESIGN               204
BOTTOM-UP VIEW OF FUNCTIONS            205
THE BLACK BOX PARADIGM          206
PARAMETERS – INPUT CHANNEL               207
RETURNED VALUES – OUTPUT CHANNEL               208
EXAMPLE – DESCRIPTION              209
EXAMPLE RESULTS           210
EXAMPLE – DAILYTEMPS               211
EXAMPLE – GETTEMPS    212
EXAMPLE – PROCESSTEMPS          213
EXAMPLE – TEMPTABLE  215
EXAMPLE – TEMPPLOT    217
REVIEW               218
FURTHER MATLAB FUNCTIONS   219
FORMAL VS. ACTUAL PARAMETERS & OUTPUTS   220
PARAMETER ASSOCIATION           221
PARAMETER ASSOCIATION EXAMPLE        222
PASS BY VALUE & PASS BY REFERENCE     224
PASS BY VALUE EXAMPLE              225
SCOPE RULES & WORKSPACES     226
SCOPE EXAMPLE               227
RUN-TIME STRUCTURE & THE STACK        228
RETURN, ERROR & WARNING      229
NARGIN & VARIABLE INPUTS       230
NARGOUT & VARIABLE OUTPUTS              231
NARGIN & NARGOUT EXAMPLE   232
GLOBAL VARIABLES         237
EFFICIENCY ISSUES          238
VARARGIN & VARARGOUT            239
SUB-FUNCTIONS              240
REVIEW               241
GRAPHICS & OTHER MATLAB FEATURES   242
MOTIVATION     243
2D GRAPHICS –PLOT        244
AXES & LABELS   245
PRINTING FIGURES          246
MULTIPLE FIGURES & SUB-PLOTS              247
OTHER 2D PLOTS              248
MULTIPLE PLOTS EXAMPLE           249
2D PLOTS - OUTPUT        252
ADDING TEXT     254
3D GRAPHICS – LINE        255
3D GRAPHICS – SURFACE               256
3D SURFACES EXAMPLE  257
POLYNOMIALS   258
INTERPOLATION & SPLINES          260
OPTIMISATION  262
INTEGRATION, DIFFERENTIATION & ORDINARY DIFFERENTIAL EQUATIONS             263
DATA-STRUCTURES         264
OBJECT ORIENTED           266
GUI DESIGN        267
TOOLBOXES        268
REVIEW               269
3D MAPS IN MATLAB, A CASE STUDY         270
PROBLEM SPECIFICATION             271
BASIC APPROACH & DATA STRUCTURE     272
MAP CREATION – ALGORITHM    274
MAP CREATION – EXAMPLE          275
CREATED MAP    276
MAP CREATION – CODE  277
MAP SMOOTHING/WEATHERING – ALGORITHM   279
MAP SMOOTHING – EXAMPLE     280
SMOOTHED MAP              281
MAP SMOOTHING – CODE            282
CRATER ADDITION – ALGORITHM              286
CRATER ADDITION – EXAMPLE    287
CRATERED MAP 288
CRATER ADDITION – CODE           289
RIVER ADDITION – ALGORITHM  292
RIVER ADDITION – EXAMPLE        293
MAP WITH RIVER             294
RIVER ADDITION – CODE               295
REVIEW               301
14           INTRODUCTION TO MATLAB
• MATLAB is a powerful engineering environment and language
-              powerful tool in engineering problem solving, data analysis, modeling and visualisation
-              useful throughout your degree & used in other courses
• Matlab is the vehicle used by this course to teach:
-              problem solving by computer
-              programming
• Today’s lecture is introductory:
-              “driving” Matlab
-              illustration by example
Reference:         
                                                            For Engineers (Ch. 1 & 2)
                                                            Mastering (Ch. 2, 3 & 34)
                                                            User’s (Ch. 1, 23  & “A Quick Overview”)
14.1       What is Matlab?
MATLAB:                            MATrix LABoratory
• “High performance language for technical computing”
• Interactive environment incorporating:
-              programming language
-              mathematical calculations (computation)
-              data visualisation
-              large number of inbuilt routines corresponding to many mathematical, engineering & science problems
• Typical uses include:
-              mathematical calculations
-              engineering & scientific problem solving
-              modeling & simulation
-              data analysis & visualisation
• Basic data structure (unit of computation) of an array/matrix
-              vector operations
-              natural expression of many engineering & scientific problems
14.2       History of Matlab
• First introduced at Stanford Uni in 1979
-              initially an interactive shell from which to call FORTRAN routines
• Later MathWorks was formed to market Matlab.
• An evolved language
-              initially a collection of things felt to be necessary
-              little top-down design
-              “Like every other scripting language, Matlab began as a simple way to do powerful things, and it has become a not-so-simple way to do very powerful things.”, Webb & Wilson, Dr. Dobb’s Journal, Jan 1999
• Heavily used by universities world wide in their engineering and science faculties for teaching
- (see links off course homepage)
• Used by scientists and engineers in research, development and design
14.3       An Initial Example
14.3.1    Population Growth
A colony of micro-organisms grows at such a rate its population doubles every 14.3 hours.

Given an initial population of 1000 organisms, calculate the population on an hourly basis for the period of two days.
Kami ada di Jakarta Selatan. KAMI MEMBERIKAN KURSUS MATLAB ONLINE - HUBUNGI MASTER ENGINEERING EXPERT (MEE) 081219449060.  Kami membuka kursus Matlab untuk pemula dan mahasiswa atau insinyur yang ingin memperdalam Matlab dan menerapkan dalam bidang teknikal, engineering, rekayasa, dsb. Format bimbingannya tugas-tugas yang bisa membantu Skripsi, Tesis, DISERTASI
Bimbingan dilakukan secara online bisa lewat WA atau email
Dijamin Bisa, atau bisa mengulang kembali. Kami juga dapat membantumembuatkan aplikasi atau program matlab/lainnya. Anda akan dilatih oleh Tim Profesional - HUBUNGI MASTER ENGINEERING EXPERT (MEE) 081219449060.   Email: kursusmatlab@gmail.com


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% amoeba.m
%                           Matlab example to show problem solving. A
%                           species doubles its population every 14.3
%                           hours. Given an initial population of 1000
%                           determine its population hourly
%                           for the first two days
% Author: Spike
% Date:   10/2/1999
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%
% Initial “setup” work %
%%%%%%%%%%%%%%%%%%%%%%%%
initialNum = 1000;                           % Initial population
doublePeriod = 14.3;                      % Time in hours to
                  % double population
interval = 0:48;                  % Two days on an hourly
                                                                               % basis
%%%%%%%%%%%%%%%%%%%%%%%
% Perform calculation %
%%%%%%%%%%%%%%%%%%%%%%%
population = initialNum*2.0.^(interval/doublePeriod);
%%%%%%%%%%%%%%%%%
% Output values %
%%%%%%%%%%%%%%%%%
combined = [interval ; population];
disp('Micro Organism Population');
disp('Hour            Population');
fprintf('%d\t%6.0f\n',combined);

1st Example (Cont)
%%%%%%%%%%%%%%%%
% Plot results %
%%%%%%%%%%%%%%%%
plot(interval,population,'-+');
xlabel('Hours'); ylabel(‘Population’);
>> amoeba
Micro Organism Population
Hour      Population
0               1000
1               1050
2               1102
14             1971
15           2069
47             9759
48           10244

14.4       Some Features
• Powerful computation engine
• 3rd generation scripting (programming) language
-              functions & argument passing
-              iteration & slection
• Implicitly vectorised operation
• Powerful 2D and 3D plotting capabilities
• Diverse and powerful inbuilt functions
-              linear algebra
-              polynomials
-              fourier analysis
-              integration & differentiation
-              differential equations
• Add-on toolboxes for specific problem domains
• multi-media capabilities
-              GUI builder
-              Movies & sound
14.5       Running Matlab
14.5.1    Startup Under Unix
Type matlab at the shell prompt:
               $ matlab
Or through the workspace menu on octarine
14.5.2    Startup Under Windows 95/98
From program menu select Student Edition of Matlab
14.5.3    To Exit
Type quit (or exit) in the command window:
               >> quit
Or through Matlab’s File menu.

14.6       Help & Demos
• Matlab has a extremely comprehensive help
14.6.1    Through the Command Window
help       (e.g., help mean). Most general form of help. Without options lists all help topics. If option then provides help for that particular command. Always start with this.
lookfor  (e.g., lookfor 3d) Look for commands that are relevant to the topic specified.
Kami ada di Jakarta Selatan. KAMI MEMBERIKAN KURSUS MATLAB ONLINE - HUBUNGI MASTER ENGINEERING EXPERT (MEE) 081219449060.  Kami membuka kursus Matlab untuk pemula dan mahasiswa atau insinyur yang ingin memperdalam Matlab dan menerapkan dalam bidang teknikal, engineering, rekayasa, dsb. Format bimbingannya tugas-tugas yang bisa membantu Skripsi, Tesis, DISERTASI
Bimbingan dilakukan secara online bisa lewat WA atau email
Dijamin Bisa, atau bisa mengulang kembali. Kami juga dapat membantumembuatkan aplikasi atau program matlab/lainnya. Anda akan dilatih oleh Tim Profesional - HUBUNGI MASTER ENGINEERING EXPERT (MEE) 081219449060.   Email: kursusmatlab@gmail.com


14.6.2    Through the Help Window
• Window based version of the above
• Invoked from the help menu or by typing helpwin in the command window.
14.6.3    Through the Help Desk
• Web browser based help, invoked from menu or by entering helpdesk or doc in the command window.
14.6.4    Demonstrations
• Large series of examples: demo command
14.7       Controlling the Environment
• A list of “meta” commands useful for controlling the Matlab environment and execution
<cntrl-c>                             Terminate currently executing command. Useful if stuck in an infinite loop.
clc                                        Clear the screen and home the cursor.

Tidak ada komentar:

Posting Komentar