Selasa, 13 Januari 2015

KURSUS MATLAB ONLINE Skripsi, Tesis, DISERTASI 081219449060




disp('Welcome to the Projectile Flight program');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Obtain inputs
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
muzzleVelocity = input('Please enter the muzzle velocity in metres/second...');
barrelAngle = input('Please enter the angle of the barrel in degrees...');
shots = input('How many entries would you like in the flight table? ');
shots = round(shots);                      % Incase they entered a non integer
barrelAngle = barrelAngle*pi/180.0;
                                                            % Convert to radians

Projectile Code (Cont)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculations
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
flightTime = 2*muzzleVelocity*sin(barrelAngle)/gravity;
                                                            % Time before shell impacts
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Construct a vector of times, being shots+1 in
% length with values linearly spaced between 0
% and the flight time of the shell
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
times = linspace(0,flightTime,shots+1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculate all the x & y co-ordinates. Note
% that these are vector/matrix operations
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
horizontal = muzzleVelocity*cos(barrelAngle)*times;
vertical = muzzleVelocity*sin(barrelAngle)*times - ...
Kami ada di Jakarta Selatan. KAMI MEMBERIKAN KURSUS MATLAB ONLINE - HUBUNGI MASTER ENGINEERING EXPERT (MEE) 081219449060.  Kami membuka kursus Matlab untuk pemula dan mahasiswa atau insinyur yang ingin memperdalam Matlab dan menerapkan dalam bidang teknikal, engineering, rekayasa, dsb. Format bimbingannya tugas-tugas yang bisa membantu Skripsi, Tesis, DISERTASI
Bimbingan dilakukan secara online bisa lewat WA atau email
Dijamin Bisa, atau bisa mengulang kembali. Kami juga dapat membantumembuatkan aplikasi atau program matlab/lainnya. Anda akan dilatih oleh Tim Profesional - HUBUNGI MASTER ENGINEERING EXPERT (MEE) 081219449060.   Email: kursusmatlab@gmail.com

                              0.5*gravity*times.*times;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Output results
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fprintf('\n The total shell flight time is %5.2f seconds\n',flightTime);
fprintf('\n Time\t Horizontal\t Vertical\n');
combined = [times ; horizontal ; vertical];
fprintf('%5.2f\t%6.1f\t\t%6.1f\n',combined);
plot(horizontal,vertical,'+-');
xlabel('Horizontal Distance');
ylabel('Vertical Distance');
title(strcat('Projectile Motion with muzzle velocity',...
               num2str(muzzleVelocity),' m/s and angle ', ...
               num2str(barrelAngle/pi*180)));
17.16     Projectile Run
>> projectile
Welcome to the Projectile Flight program
Please enter the muzzle velocity in metres/second...70
Please enter the angle of the barrel in degrees...35
How many entries would you like in the flight table? 20
 The total shell flight time is  8.19 seconds
 Time     Horizontal          Vertical
 0.00         0.0                        0.0
 0.41        23.5                      15.6
 0.82        46.9                      29.6
 1.23        70.4                      41.9
 1.64        93.9                      52.6
 2.05      117.3                     61.6
 2.46      140.8                     69.0
 2.86      164.3                     74.8
 3.27      187.7                     78.9
 3.68      211.2                     81.3
 4.09      234.7                     82.2
 4.50      258.2                     81.3
 4.91      281.6                     78.9
 5.32      305.1                     74.8
 5.73      328.6                     69.0
 6.14      352.0                     61.6
 6.55      375.5                     52.6
 6.96      399.0                     41.9
 7.37      422.4                     29.6
 7.78      445.9                     15.6
 8.19      469.4                      0.0
17.17     Projectile Plot

17.18     Review
• Importance of I/O in a program
• disp
• format
• input
- input of strings
• file concept
• fprintf
• fscanf
18           ARRAYS IN MATLAB 1 – VECTORS
• Often desirable to collect a sequence of values together as a single object
- e.g., temperature readings for a day
- array is the general data structure for this supported by most languages
• Matlab is constructed around the concept of an array/Matrix
- MATrix LABoratory
- virtually all built-in operations work on arrays transparently
 • Today’s lecture
- introduces vectors (1 dimensional arrays)
• construction
• addressing
• usage
References:        For Engineers (Ch. 1, 2)
                                                            Mastering (Ch. 6)
                                             User’s Guide (Ch. 6)                       
18.1       Motivation
• Often it is desirable to collect a number of data values together “in one place”
For instance:
Table of under-water depths and pressures
Class results for an exam
Heating results for an aero-foil at different speeds
• Advantages:
-              a single “handle” on the data
-              individual elements (datum) may still be accessed
-              operations on entire data can often be carried out simply
-              size of data may vary each time and indeed (depending on programming language) may be varied dynamically (grown & shrunk)
18.2       Visualising a 1D Array (Vector)
• One common view of arrays is:
-              a series of numbered boxes
-              each box may hold a single data value
-              each particular box is addressed by using its number
-              the collection of boxes together has the name of the array
• For example a table of temperatures:

-              the array (vector) is called celcius
-              it has 5 elements (numbered 1 to 5)
-              element number 2 contains the value 20
18.3       Matlab & Arrays
• Matlab was designed to strongly support arrays
-              most operations treat scalars and arrays in exactly the same way
e.g.,
               X = Y + Z
X may be a scalar, vector or multi-dimensional array depending on what Y and Z are.
• in most programming languages different code would be required for each of the above cases
-              arrays can be dynamically created and altered in size
e.g.,
               arr1 = 1:10;
               arr1(11) = 11;
• in most programming languages the size of an array is fixed at compile time and may not be altered in the program
• This in-built support for arrays in Matlab means:
-              it is often relatively easy and straight-forward to solve problems (many problems in engineering & science are naturally expressed with matrices)
-              it is easy for novice programmers (even experienced) to make errors
18.4       Vector Creation
• Matlab provides a number of mechanisms for the explicit creation of arrays:
square brackets []            When the individual elements are listed
colon operator :               When a starting value, final value and step-size are known (sequence)
linspace & logspace         To create linear and exponential sequences of a set size
• For example:
>> theta=[0 pi/4 pi/2 3*pi/4 pi]
theta =
0    0.7854    1.5708    2.3562    3.1416
>> theta = [theta pi+theta(2:end)]
theta =
Columns 1 through 7
         0    0.7854    1.5708    2.3562    3.1416    3.9270    4.7124
  Columns 8 through 9
    5.4978    6.2832
>> sinValues=sin(theta)
sinValues =
Columns 1 through 7
         0    0.7071    1.0000    0.7071    0.0000   -0.7071   -1.0000
  Columns 8 through 9
18.5       Vector Creation Example
   -0.7071   -0.0000
>> gamma = 0:0.25:2
gamma =
Columns 1 through 7
         0    0.2500    0.5000    0.7500    1.0000    1.2500    1.5000
  Columns 8 through 9
    1.7500    2.0000
>> gamma = gamma*pi
gamma =
Columns 1 through 7
         0    0.7854    1.5708    2.3562    3.1416    3.9270    4.7124
  Columns 8 through 9
    5.4978    6.2832
>> cosValues = cos(gamma)
cosValues =
Columns 1 through 7
    1.0000    0.7071    0.0000   -0.7071   -1.0000   -0.7071   -0.0000
  Columns 8 through 9
    0.7071    1.0000

Vector Creation (Cont)
>> cosPlusSin = cosValues + sinValues
cosPlusSin =
Columns 1 through 7
    1.0000    1.4142    1.0000    0.0000   -1.0000   -1.4142   -1.0000
  Columns 8 through 9
   -0.0000    1.0000
>> sigma = linspace(0,2*pi,9)
sigma =
Columns 1 through 7
         0    0.7854    1.5708    2.3562    3.1416    3.9270    4.7124
  Columns 8 through 9
    5.4978    6.2832
>> tanValues = tan(sigma)
tanValues =
1.0e+16 *
  Columns 1 through 7
         0    0.0000    1.6331   -0.0000   -0.0000    0.0000    0.5444
  Columns 8 through 9
   -0.0000   -0.0000
18.6       Addressing the Elements of a Vector
• Elements of a vector are accessing by specifying their number
-              indexing uses integer values, and starts with 1 for the first element
• Circle brackets () used to enclose indexes
• Indexes can be scalars, or arrays themselves!
• For example:
>> tanValues(1), tanValues(2)
ans =
0
ans =
1.0000
>> cosValues(1:2:9)
ans =
1.0000    0.0000   -1.0000   -0.0000    1.0000
>> sinValues([2 6 5])
ans =
0.7071   -0.7071    0.0000
>> sinValues(9:-1:1)
ans =
Columns 1 through 7
   -0.0000   -0.7071   -1.0000   -0.7071    0.0000    0.7071    1.0000
  Columns 8 through 9
    0.7071         0
18.7       Column vs. Row Vectors
• By default vectors in Matlab are row vectors
- a single row with multiple columns
• Matlab also supports column vectors

• Means of creation are:
-              square bracket [] constructor with semi-colons or single elements per line
-              transposing a row vector
Note: An array with multiple columns & vectors is a matrix (2D array). That is next lecture’s topic.
18.8       Column vs Row Example
>> a = [1 2 3 4 5]
a =
1     2     3     4     5
>> b=a'
b =
     1
     2
     3
     4
     5
>> a*b
ans =
55
>> c=[6; 7; 8; 9; 10]
c =
     6
     7
     8
     9
    10
>> d=[11
12
13
14
15]
d =
 11
    12
    13
    14
    15
18.9       Scalar-Array Mathematics
• Scalars & arrays may be combined in a single expression using the normal operators +*-/
- extremely useful & intuitive
• Basic rule
apply the scalar operation to each element of the array
• For example:
>> quarters=0:0.25:2
quarters =
Columns 1 through 7
0    0.2500    0.5000    0.7500    1.0000    1.2500    1.5000
  Columns 8 through 9
    1.7500    2.0000
>> circle=quarters*pi
circle =
Columns 1 through 7
         0    0.7854    1.5708    2.3562    3.1416    3.9270    4.7124
  Columns 8 through 9
    5.4978    6.2832
>> strictlyPositive = quarters*4 + 1
strictlyPositive =
     1     2     3     4     5     6     7     8     9
18.10     Example cel2far.m
A program to produce a table of conversions from temperature in celcius to fahrenheit.
Kami ada di Jakarta Selatan. KAMI MEMBERIKAN KURSUS MATLAB ONLINE - HUBUNGI MASTER ENGINEERING EXPERT (MEE) 081219449060.  Kami membuka kursus Matlab untuk pemula dan mahasiswa atau insinyur yang ingin memperdalam Matlab dan menerapkan dalam bidang teknikal, engineering, rekayasa, dsb. Format bimbingannya tugas-tugas yang bisa membantu Skripsi, Tesis, DISERTASI
Bimbingan dilakukan secara online bisa lewat WA atau email
Dijamin Bisa, atau bisa mengulang kembali. Kami juga dapat membantumembuatkan aplikasi atau program matlab/lainnya. Anda akan dilatih oleh Tim Profesional - HUBUNGI MASTER ENGINEERING EXPERT (MEE) 081219449060.   Email: kursusmatlab@gmail.com

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% cel2far.m
%            Program to produce a table of conversion
%            from temperature in celcius to fahrenheit
%            using the formula
%                           F = C*1.8 + 32
%            User enters lower and upper bounds, as
%            well as the step interval for temperatures
%            in celcius. Program produces a table of
%            celcius versus fahrenheit entries.
% Author: Spike
% Date:   17/2/1999
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%
% Get inputs
%%%%%%%%%%%%%%%%%%%%%%%%
disp('Celcius to Fahrenheit conversion');
lower = input('Please enter the min. temp. in celcius...');
upper = input('Please enter the max. temp. in celcius...');
step = input('Please enter the step size in degrees for the table...');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculations
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
celcius = lower:step:upper;
fahrenheit = 1.8*celcius + 32;
combined = [celcius; fahrenheit];
fprintf('%8s\t%s\n','Celcius','Fahrenheit');
disp('
--');
fprintf('%5.1f\t\t%5.1f\n',combined);
18.11     cel2far Run
>> cel2far
Celcius to Fahrenheit conversion
Please enter the min. temp. in celcius...-10
Please enter the max. temp. in celcius...40
Please enter the step size in degrees for the table...5
 Celcius Fahrenheit
10.0                      14.0
 -5.0                      23.0
  0.0                      32.0
  5.0                      41.0
 10.0                     50.0
 15.0                     59.0
 20.0                     68.0
 25.0                     77.0
 30.0                     86.0
 35.0                     95.0
 40.0                     104.0
>> diary off
18.12     Array-Array Mathematics
• Matlab also supports mathematical operations between arrays
- arrays must be of same size & dimensionality
- standard operators interpreted as per mathematical definitions (matrix operations – see next lecture)
- additional “dot” operators provided to mimic scalar operations
• For example:
>> strictlyPositive
strictlyPositive =
1     2     3     4     5     6     7     8     9
>> squares = strictlyPositive.^2
squares =
1     4     9    16    25    36    49    64    81
>> strictlyPositive = quarters+quarters+quarters+quarters+1
strictlyPositive =
1     2     3     4     5     6     7     8     9
>> cubes = squares .* strictlyPositive
cubes =
1     8    27    64   125   216   343   512   729
>> oneOnX = squares ./ cubes
oneOnX =
Columns 1 through 7
1.0000    0.5000    0.3333    0.2500    0.2000    0.1667    0.1429
  Columns 8 through 9
    0.1250    0.1111
18.13     Example – bouncing.m
A program to calculate the height of an object as it bounces.

User supplies the initial height from which the object is dropped, the number of bounces to simulate, and the elasticity of the object.
Kami ada di Jakarta Selatan. KAMI MEMBERIKAN KURSUS MATLAB ONLINE - HUBUNGI MASTER ENGINEERING EXPERT (MEE) 081219449060.  Kami membuka kursus Matlab untuk pemula dan mahasiswa atau insinyur yang ingin memperdalam Matlab dan menerapkan dalam bidang teknikal, engineering, rekayasa, dsb. Format bimbingannya tugas-tugas yang bisa membantu Skripsi, Tesis, DISERTASI
Bimbingan dilakukan secara online bisa lewat WA atau email
Dijamin Bisa, atau bisa mengulang kembali. Kami juga dapat membantumembuatkan aplikasi atau program matlab/lainnya. Anda akan dilatih oleh Tim Profesional - HUBUNGI MASTER ENGINEERING EXPERT (MEE) 081219449060.   Email: kursusmatlab@gmail.com

The elasticity determines how high the object returns after a bounce via the following formula:

>> bouncing
Please input the initial height...100
Please input the object's elasticity [0-1]...0.7
Please input the number of bounces required...5
Bounce Table
bounce:    0      1      2      3      4      5     
height: 100.0   49.0   24.0   11.8    5.8    2.8   
18.14     bouncing.m Code
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% bouncing.m
%            A script to simulate the bouncing of a ball or
%            other similar object. The user enters three
% values: the initial height from which the
% object is dropped, the elasticity of the
% object (a value between 0 and 1, 1 meaning
% "perfect" elasticity) and the number of
%            bounces to be simulated.
%            The program employs the following equation to
%            determine the height of a new bounce:
%            Hnew = Hold*Elasticity^2
%            i.e., New height is the old height times the
% square of the object's elasticity.
%            Rewriting the equation so we may use vectors
% we see
%            Hn = H0*Elasticity^(2*n)
%            i.e., height on bounce n is the height of
% initial drop times the elasticity raised to
% the 2n.
% Author: Spike
% Date:   17/2/1999
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Obtain inputs
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
initialHeight = input('Please input the initial height...');
elasticity = input('Please input the object''s elasticity [0-1]...');
bounces = input('Please input the number of bounces required...');

bouncing.m (Cont)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Create the two "building block" vectors that
% are needed. bounceVector is simply a vector
% counting the number of bounces. It is used in
% output and the calculations. elasticRep is
% simply a vector of size (bounces+1) with
% each element set to the elasticity of the
% object. It is used to obtain a vector of
% elasticities ^2n
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
bounceVector = 0:bounces;
elasticRep = linspace(elasticity,elasticity,bounces+1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Heart of the program. The vector heights is
% built using the rewritten equation.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
heights = initialHeight*elasticRep.^(2*bounceVector);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Output the results
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fprintf('\nBounce Table\n');
fprintf('%8s:','bounce');
fprintf('%5.0f  ',bounceVector);
disp(' ');
fprintf('%8s:','height');
fprintf('%5.1f  ',heights);
disp(' ');
18.15     Review
• vectors as models of the real-world
• arrays in Matlab
• Creating vectors
- square brackets
- colon operator
- linspace & logspace
• Addressing vector elements
• Row vs. column vectors
• scalar-array mathematics
• array-array mathematics
19           MATLAB ARRAYS 2 – MATRICES
• As already seen arrays are a useful data type
• Arrays need not be limited to 1-dimension:
- many real-world problems have higher dimensionality
• Today’s lecture:
- continues with arrays in Matlab
- concentrates on 2D (matrices) and higher dimensioned arrays
References:        For Engineers (Ch. 1, 3, 6)
                                                            User’s Guide (Ch. 6, 7)
                                                            Mastering (Ch. 6, 7, 16)
19.1       2D(+) Arrays – Motivation
• Much real-world data has a higher dimensionality than one.
Kami ada di Jakarta Selatan. KAMI MEMBERIKAN KURSUS MATLAB ONLINE - HUBUNGI MASTER ENGINEERING EXPERT (MEE) 081219449060.  Kami membuka kursus Matlab untuk pemula dan mahasiswa atau insinyur yang ingin memperdalam Matlab dan menerapkan dalam bidang teknikal, engineering, rekayasa, dsb. Format bimbingannya tugas-tugas yang bisa membantu Skripsi, Tesis, DISERTASI
Bimbingan dilakukan secara online bisa lewat WA atau email
Dijamin Bisa, atau bisa mengulang kembali. Kami juga dapat membantumembuatkan aplikasi atau program matlab/lainnya. Anda akan dilatih oleh Tim Profesional - HUBUNGI MASTER ENGINEERING EXPERT (MEE) 081219449060.   Email: kursusmatlab@gmail.com
• For example:
-              Image on the monitor. Can be viewed as a 2D grid of pixels, where for each pixel an R-G-B intensity is kept.
-              Terrain map. Can be viewed as a 2D grid of map heights.
-              Class results. Can be viewed as a 2D grid with each row being a different student and each column being a different assignment or exam.
Kami ada di Jakarta Selatan. KAMI MEMBERIKAN KURSUS MATLAB ONLINE - HUBUNGI MASTER ENGINEERING EXPERT (MEE) 081219449060.  Kami membuka kursus Matlab untuk pemula dan mahasiswa atau insinyur yang ingin memperdalam Matlab dan menerapkan dalam bidang teknikal, engineering, rekayasa, dsb. Format bimbingannya tugas-tugas yang bisa membantu Skripsi, Tesis, DISERTASI
Bimbingan dilakukan secara online bisa lewat WA atau email
Dijamin Bisa, atau bisa mengulang kembali. Kami juga dapat membantumembuatkan aplikasi atau program matlab/lainnya. Anda akan dilatih oleh Tim Profesional - HUBUNGI MASTER ENGINEERING EXPERT (MEE) 081219449060.   Email: kursusmatlab@gmail.com
-              Stock market figures. Can be viewed as a 2D grid with time as one axis and the individual stocks as the 2nd axis.

Tidak ada komentar:

Posting Komentar