Selasa, 13 Januari 2015

EFFICIENCY & ERRORS IN MATLAB KURSUS MATLAB ONLINE Skripsi, Tesis, DISERTASI 081219449060




EFFICIENCY & ERRORS IN MATLAB

     mean(values),max(values),min(values));
else
  disp('Must have a positive number of values');
end;
22.19     Review
• definite vs. indefinite iteration
• FOR loop
• WHILE loop
• BREAK statement
• loop usage
• loop control
• loops vs. implicit vectorisation
23           EFFICIENCY & ERRORS
• Correctness of code is clearly a vital goal
Requires both a correct programming approach and understanding of computer operations
• Efficiency of code is also an important consideration
minimise impact on computer
• This lecture covers the following topics of relevance to both correctness and efficiency:
numeric limitations of the computer and implications for program correctness
debugging techniques
order of an algorithm (complexity)
timing functions in Matlab
performance profiling in Matlab
some guidelines for efficiency
looping vs. implicit vectorisation
References:        For Engineers (Ch. 2)
                                             Abernathy & Allen  (Ch. 8)
                                             Mastering (Ch. 11, 15), Student (Ch. 10)
23.1       Motivation
• A correct program is not simply a matter of luck
-              programmer must understand syntax & semantic of language being employed
-              programmer must employ a correct algorithm & have considered all alternatives
-              programmer must understand inherent limitations of the computer and how that might affect an otherwise “correct” program
• Simply correct is not always sufficient for engineering & real-world problems:
-              A correct program is little use if it takes 1 year to execute but the answer is required today
• Efficient code should always be an objective of a programmer:
-              program is a more efficient user of computer resources (runs faster, uses less memory etc.)
-              aesthetically pleasing
23.2       Numeric Limitations
• Computers set aside a fixed size storage area for numeric values
-              implies limits to representation (range and precision)
-              implies programs can be logically correct but still produce incorrect results
-              there are means of circumventing this problem though they are costly in compute time & memory
• All Matlab numeric variables are stored as double-precision floats
- 64-bits of storage
23.2.1    Overflow
• Numbers may become too large for the machine to represent:
>> x=1e10
x =
   1.0000e+10
>> for cnt=1:20
        x=x*x;
        fprintf('%d: %f\n',cnt,x);
end;
1: 100000000000000000000.000000
2: 10000000000000000303786028427003666890752.000000

Numerical Limitations (Cont)
3: 100000000000000000026609864708367276537402401181200809098131977453489758916313088.000000
4: 10000000000000000065284077450682265568456642148886267118448844545520511777838181142510337509988867035816342470187175785193750117648543530356184548650438281396224.000000
5: Inf
:
20: Inf
23.2.2    Underflow
• Very small values (close to zero) round to zero
>> x=1e-10
x =
   1.0000e-10
>> for cnt=1:10
        x=x*x;
        fprintf('%d  %e\n',cnt,x);
end;
1  1.000000e-20
2  1.000000e-40
3  1.000000e-80
4  1.000000e-160
5  9.999889e-321
6  0.000000e+00
7  0.000000e+00
8  0.000000e+00
9  0.000000e+00
10  0.000000e+00
>> diary off
23.3       Rounding & Cancellation
23.3.1    Rounding (Precision)
• Values may not be represented exactly inside the machine
>> test=9.8765432109876543210987654321
test =
   9.87654321098765
>> fprintf('%30.28f\n',test);
9.8765432109876538646631161100
23.3.2    Cancelation (Order of Precedence)
• Large values may cancel small values and order of mathematical operations can be critical
>> x=1e50
x =
   1.0000e+50
>> y=-1e50
y =
  -1.0000e+50
>> x+y+1
ans =
     1
>> x+1+y
ans =
     0
>> x+(1+y)
ans =
     0
23.4       Work-Arounds for Numeric Limitations
• No simple fixes for these problems:
-              be aware of the limitations of computers
-              think about how those limitations might impact the program being created
23.4.1    For Instance: Comparing Two Numbers
• Don’t check for equality between two floating point numbers
- round-off error may mean that they never become equal
• Check that the difference is small
Don’t
while x~=y
               <do something to make x closer to y>
end;
Do
while abs(x-y)>eps
               <do something to make x closer to y>
end;
Don’t
while x~=0
               <do something>
end;
Do
while abs(x)>eps
               <do something>
23.5       Errors & Debugging in Matlab
• Testing is a necessary step in (attempting to) ensuring that code is error free
-              not only logic errors but also possibility of numeric limitations
• The following are useful simple steps in debugging an M-file
-              remove semi-colons from lines to see results as they are being calculated
-              place disp() and fprintf() statements in the code to both view the value of variables and see when sections of code are being reached
-              insert the keyboard command into the M-file
• execution is suspended when the program reaches that point
• use standard Matlab commands to view variables etc.
• type the word return when you are finished and execution of the M-file resumes from the following line.
23.6       Matlab Debugger
• Matlab includes a debugging tool for tracing execution, setting breakpoints, viewing the workspace, etc.
• Graphical form integrated into Matlab’s editor (PC & X-Window version)
• Command line form
-              most important commands include dbstop, dbstatus, dbclear, dbcont and dbstep (see help pages)
• General usage pattern is:
-              set breakpoint (red stop-sign in graphical version) on line of code
-              run the M-file using the debugger
-              execution will stop when break-point is hit
-              examine environment (variables etc.)
-              continue execution or step through a line at a time when satisfied
23.7       Order of an Algorithm
• The time an algorithm requires to complete is usually a function of the input data size
-              e.g., to sort a list of names takes longer and longer as the list grows in size
• The order notation has been developed to quantify the complexity of different algorithms
-              the highest polynomial order or exponent is recorded (constants are ignored)
-              n is used to represent the size of the input data
-              used as a measure of the efficiency of an algorithm
• For instance:
-              To search a list of un-ordered names is O(n) For instance, for 1000 names it is a linear function of 1000 operations.
Kami ada di Jakarta Selatan. KAMI MEMBERIKAN KURSUS MATLAB ONLINE - HUBUNGI MASTER ENGINEERING EXPERT (MEE) 081219449060.  Kami membuka kursus Matlab untuk pemula dan mahasiswa atau insinyur yang ingin memperdalam Matlab dan menerapkan dalam bidang teknikal, engineering, rekayasa, dsb. Format bimbingannya tugas-tugas yang bisa membantu Skripsi, Tesis, DISERTASI
Bimbingan dilakukan secara online bisa lewat WA atau email
Dijamin Bisa, atau bisa mengulang kembali. Kami juga dapat membantumembuatkan aplikasi atau program matlab/lainnya. Anda akan dilatih oleh Tim Profesional - HUBUNGI MASTER ENGINEERING EXPERT (MEE) 081219449060.   Email: kursusmatlab@gmail.com

-              To efficiently search a list of ordered names using a binary search is O(log2n). For instance to search a list of 1000 names is some linear function of 10 operations
-              The fastest sorting algorithms are O(nlogn)
• Many difficult problems such as those known as NP-complete (e.g., travelling salesman) have no known algorithm that guarantees the optimal solution in polynomial time
23.8       Timing in Matlab
• Matlab provides a number of date and time related functions
-              some of these functions are useful for recording how long a task takes to complete (a measure of efficiency)
• tic and toc start and stop a stop-watch (respectively)
-              toc displays the elapsed user time since the stopwatch was started
>> tic; [X Y Z]=mapGen(50); Z10=mapSmooth(Z,10); toc
elapsed_time =
   11.5290
• cputime returns the current CPU seconds used since the Matlab session was started
-              record before and after a task and examine the difference
-              CPU time is a far better measure of the work an algorithm entails than the user (elapsed) time.

>> before=cputime;
>> [X Y Z]=mapGen(50); Z10=mapSmooth(Z,10);
>> fprintf('CPU time=%6.4f\n',cputime-before);
CPU time=11.2600
>> diary off
23.9       Performance Profiling in Matlab
• M-file performance can be analysed using Matlab’s built-in profiler
-              profiler examines a running program to determine what portion of time is spent in each component of the code
-              results can be used to help fine-tune and speed the code
• General operation is the following
-              reset the profiler
-              indicate to the profiler which M-file is to be analysed
-              run the M-file with real data
-              generate a report using the profiler
23.10     Profiler Example
>> [X Y Z] = mapGen(50);
>> profile reset
>> profile mapMeteor
>> Zmeteor = mapMeteor(Z);
>> profile report
Total time in "CS1E/Matlab/Map/mapMeteor.m": 0.22 seconds
100% of the total time was spent on lines:
               [74 72 77]
             71:    for jIndex=1:size(oMap,1)
0.07s, 32%   72:       if (abs((iIndex-xCentre)^2+(jIndex-yCentre)^2-radius^2)<=
             73:          newMap(jIndex,iIndex)=depth+0.02*difference;
0.11s, 50%   74:       elseif ((iIndex-xCentre)^2+(jIndex-yCentre)^2 < radius^2)
             75:          newMap(jIndex,iIndex)=depth*(100.0+randn)/100.0;
             76:       else
0.04s, 18%   77:          newMap(jIndex,iIndex)=oMap(jIndex,iIndex);
             78:       end;
>> profile done
>> diary off
23.11     Guidelines for Efficiency
• Clearly, writing efficient algorithms is a desirable goal
• However, there is no simply formula for writing efficient algorithms
-              experience and consideration of the current problem are vital
• That said, there are often certain guidelines or recurring areas in which efficiencies can be made
23.11.1 Special Cases and Redundant Checking
• Avoid redundant checks and checks for special cases, especially inside loops
-              e.g., checking for first or last item inside a large loop
Don’t     (100 redundant checks)
for num=1:100
  if rem(num,10)==0
    fprintf(‘%4d\n’,cnt);
  else
    fprintf(‘%4d\t’,cnt);
  end;
end;
Do
for outer=0:9
  for inner=1:10
    fprintf(‘%4d\t’,outer*10+inner);
  end;
  fprintf(‘\n’);
end;
23.12     Efficiency: Redundancy & Functions
23.12.1 Avoid Redundant Computations
• Many times calculations are performed (inside a loop) needlessly
-              the value has previously been calculated or can be derived simply from an earlier value
Don’t (needless trig calls, multiplications, powers)
for intervals=0:0.1:5
  xLoc=velocity*cos(angle)*intervals;
  yloc=velocity*sin(angle)*intervals-…
       0.5*gravity*intervals^2;
end;
Do
xDelta=velocity*cos(angle)*0.1;
yMult=velocity*sin(angle);
gravConst=0.5*gravity;
xLoc=0; yLoc=0;
for intervals=0.1:0.1:5
  xLoc=xLox+xDelta;
  yLoc=intervals*(yMult-gravConst*intervals);
end;
23.12.2 Minimise Costly Function Usage
• Functions have a cost overhead (calling process)
-              trig functions, raising to a power, etc.
-              minimise their wasted usage
• See above example
23.13     Efficiency: Arrays
23.13.1 Minimise Array Referencing
• Referencing array elements has a cost overhead
-              calculation of the (memory) address of the element is necessary
• Repeatedly referenced elements should be saved as a scalar
Don’t     (Repeated reference to values(1))
for index=2:size(values,2)
  if values(index)>values(1)
    <do something special>
  end;
end;
Do
firstValue=values(1);
for index=2:size(values,2)
  if values(index)>firstValue
    <do something special>
  end;
end;
23.13.2 Time vs Space
• Time and space can often be traded off against each other for the needs of the problem
- e.g.,  calculation of a trig function through a series expansion versus storage as a table
23.14     Efficiency: Loop Termination
23.14.1 Avoid Late Termination of Loops (Needless Calculations)
• Many times a task completes sooner than the worst case
-              if completion detection is cheap then further work should be abandoned.
Kami ada di Jakarta Selatan. KAMI MEMBERIKAN KURSUS MATLAB ONLINE - HUBUNGI MASTER ENGINEERING EXPERT (MEE) 081219449060.  Kami membuka kursus Matlab untuk pemula dan mahasiswa atau insinyur yang ingin memperdalam Matlab dan menerapkan dalam bidang teknikal, engineering, rekayasa, dsb. Format bimbingannya tugas-tugas yang bisa membantu Skripsi, Tesis, DISERTASI
Bimbingan dilakukan secara online bisa lewat WA atau email
Dijamin Bisa, atau bisa mengulang kembali. Kami juga dapat membantumembuatkan aplikasi atau program matlab/lainnya. Anda akan dilatih oleh Tim Profesional - HUBUNGI MASTER ENGINEERING EXPERT (MEE) 081219449060.   Email: kursusmatlab@gmail.com

Don’t  (no detection of completion + extra looping)
for outer=1:size(values,2)-1
  for index=1:size(values,2)-1
    if values(index)>values(index+1)
      tmp=values(index);
      values(index)=values(index+1);
      values(index+1)=tmp;
    end;
  end;
end;
Do
sorted=0;
while ~sorted
  sorted=1;
  for index=1:size(values,2)-1
    if values(index)>values(index+1)
      tmp=values(index);
      values(index)=values(index+1);
      values(index+1)=tmp;
      sorted=0;
    end;
  end;
end;
23.15     Efficiency – Complicating Issues
• Code written for efficiency often looses (a degree of) readability
-              extra code added (see above examples)
-              “simple” structure of original problem can be altered due to efficiency considerations (e.g., projectile motion example above)
• The trade-off between readability and efficiency is yet another issue a programmer must consider
-              relative weighting (importance) can be task/problem dependent
• Integrated programming environments such as Matlab complicate questions of efficiency
-              implementation/translation process may have in-built efficiencies & inefficiencies
+ e.g., Matlab and vectorisation
-              Hence accumulated wisdom/experience/intuition may be incorrect
-              In such cases quantifiable measures such as a profiler should be relied upon.
23.16     Looping vs Implicit Vectorisation
• Matlab is built around the concept of a Matrix/array
-              all variables are considered to be arrays
• In-built operators and functions are often defined to perform an operation on an entire array in a single step
-              This is implicit vectorisation
• In practice this means that code which requires explicit looping in most other languages can be written as single statements in Matlab
-              e.g., tables of values, processing array elements etc.
• Matlab performs (executes) implicit vectorisation far faster than the equivalent, explicitly looping code
In practice, any Matlab code that can be written to utilise implicit vectorisation should do so rather than using explicit looping.
23.17     Timing Example
• Three different scripts to perform the same task, each timed
-              first looping without considering efficiency
-              second looping but considering efficiency
-              third using implicit vectorisation
>> %% Loop with no thoughts of efficiency
>> shell1
shell1 took   3.70 cpu seconds to complete
elapsed_time =
    4.1651
>>  % Loop with efficiency considered
>> shell2
shell2 took   1.86 cpu seconds to complete
elapsed_time =
    2.0539
>> % Implicit vectorisation. No attempted efficiency
>> shell3
shell3 took   0.01 cpu seconds to complete
elapsed_time =
    0.0640
23.18     Shell1 – Looping without Efficiency
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% shell1.m
%            Calculate the flight of a shell at 0.01
%            second intervals for 300 seconds. The shell
%            has a muzzle velocity of 800 metres/sec
%            and was fired at an angle of 45 degrees.
%
%            This M-file is one of three "sister"
%            scripts all solving the same problem.
Kami ada di Jakarta Selatan. KAMI MEMBERIKAN KURSUS MATLAB ONLINE - HUBUNGI MASTER ENGINEERING EXPERT (MEE) 081219449060.  Kami membuka kursus Matlab untuk pemula dan mahasiswa atau insinyur yang ingin memperdalam Matlab dan menerapkan dalam bidang teknikal, engineering, rekayasa, dsb. Format bimbingannya tugas-tugas yang bisa membantu Skripsi, Tesis, DISERTASI
Bimbingan dilakukan secara online bisa lewat WA atau email
Dijamin Bisa, atau bisa mengulang kembali. Kami juga dapat membantumembuatkan aplikasi atau program matlab/lainnya. Anda akan dilatih oleh Tim Profesional - HUBUNGI MASTER ENGINEERING EXPERT (MEE) 081219449060.   Email: kursusmatlab@gmail.com

%            Each script is written with different
%            efficiency goals in mind and timed with
%            the cputime function (the calculated
%            results are ignored).
%
%            This script is written with no mind
%            to efficiencies. Nor does it employ
%            Matlab's implicit vectorisation
%
% Author: Spike
% Date:   19/3/1999
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
tic;
before=cputime;
velocity=800.0;
angle=45.0;
gravity=9.81;
for frames=1:30000
  seconds=frames/100;
  x(frames)=velocity*seconds*cos(angle*pi/180);
  y(frames)=velocity*seconds*sin(angle*pi/180)-...
    0.5*gravity*seconds^2;
end;
fprintf('shell1 took %6.2f cpu seconds to complete\n',cputime-before);
toc;
23.19     Shell2 – Looping Efficiently
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% shell2.m
%            Calculate the flight of a shell at 0.01
%            second intervals for 300 seconds. The shell
%            has a muzzle velocity of 800 metres/sec
%            and was fired at an angle of 45 degrees.
Kami ada di Jakarta Selatan. KAMI MEMBERIKAN KURSUS MATLAB ONLINE - HUBUNGI MASTER ENGINEERING EXPERT (MEE) 081219449060.  Kami membuka kursus Matlab untuk pemula dan mahasiswa atau insinyur yang ingin memperdalam Matlab dan menerapkan dalam bidang teknikal, engineering, rekayasa, dsb. Format bimbingannya tugas-tugas yang bisa membantu Skripsi, Tesis, DISERTASI
Bimbingan dilakukan secara online bisa lewat WA atau email
Dijamin Bisa, atau bisa mengulang kembali. Kami juga dapat membantumembuatkan aplikasi atau program matlab/lainnya. Anda akan dilatih oleh Tim Profesional - HUBUNGI MASTER ENGINEERING EXPERT (MEE) 081219449060.   Email: kursusmatlab@gmail.com

%
%            This M-file is one of three "sister"
%            scripts all solving the same problem.
%
%            This script is written with efficiencies
%            in mind, but without employing Matlab's
%            implicit vectorisation.
%
% Author: Spike
% Date:   19/3/1999
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
tic;
before=cputime;
velocity=800.0;
angle=45.0;
gravity=9.81;
x=zeros(1,30000);
y=zeros(1,30000);
currentX=0;
currentY=0;
xDelta=velocity*cos(angle*pi/180)*0.01;
yMult=velocity*sin(angle*pi/180);
gravConst=0.5*gravity;
seconds=0;
for frames=1:30000
  seconds=seconds+0.01;
  currentX=currentX+xDelta;
  x(frames)=currentX;
  y(frames)=yMult*seconds-gravConst*seconds*seconds;
end;
fprintf('shell2 took %6.2f cpu seconds to complete\n',cputime-before);
toc;
23.20     Shell3 – Implicit Vectorisation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% shell3.m
%            Calculate the flight of a shell at 0.01
%            second intervals for 300 seconds. The shell
%            has a muzzle velocity of 800 metres/sec
%            and was fired at an angle of 45 degrees.
%
%            This M-file is one of three "sister"
%            scripts all solving the same problem.
%            Each script is written with different
%            efficiency goals in mind and timed with
%            the cputime function (the calculated
%            results are ignored).
Kami ada di Jakarta Selatan. KAMI MEMBERIKAN KURSUS MATLAB ONLINE - HUBUNGI MASTER ENGINEERING EXPERT (MEE) 081219449060.  Kami membuka kursus Matlab untuk pemula dan mahasiswa atau insinyur yang ingin memperdalam Matlab dan menerapkan dalam bidang teknikal, engineering, rekayasa, dsb. Format bimbingannya tugas-tugas yang bisa membantu Skripsi, Tesis, DISERTASI
Bimbingan dilakukan secara online bisa lewat WA atau email
Dijamin Bisa, atau bisa mengulang kembali. Kami juga dapat membantumembuatkan aplikasi atau program matlab/lainnya. Anda akan dilatih oleh Tim Profesional - HUBUNGI MASTER ENGINEERING EXPERT (MEE) 081219449060.   Email: kursusmatlab@gmail.com


%
%            This script is written with no mind
%            to efficiencies. Nor does it employ
%            Matlab's implicit vectorisation
%
% Author: Spike
% Date:   19/3/1999
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
tic;
before=cputime;
velocity=800.0;
angle=45.0;
gravity=9.81;
seconds=0.01:0.01:300;
x=velocity*seconds*cos(angle*pi/180);
y=velocity*seconds*sin(angle*pi/180)-...




 Hasil pencarian lain 



www.teknikinformatika.net/2014/01/17/array-pada-matlab   Cached
Array merupakan bentuk penyimpanan data yang dapat menyimpan sekumpulan data yang mempunyai tipe sama dalam sebuah nama. Sekalipun nama -nya sama, akan tetapi data 1 ...
www.teknikinformatika.net/.../pengulangan-pada-matlab-part-1   Cached
i = 1; while i <= 10 disp('Teknik Informatika') i = i + 1; end. Pengulangan for Pengulangan for biasanya digunakan untuk kasus dimana banyaknya pengulangan yang akan ...
teknikinformatika-esti.blogspot.com/...program-matlab.html   Cached
May 05, 2011 · MATLAB adalah sebuah bahasa dengan (high-performance) kinerja tinggi untuk komputasi masalah teknik. Matlab mengintegrasikan komputasi, visualisasi, dan ...
teknikinformatika-esti.blogspot.com/.../tutorial-matlab.html   Cached
Jun 06, 2011 · Teknik Informatika. Ikatlah Ilmu Dengan Menuliskannya. Laman. ... Buat yang mau belajar Matlab, Nich aku buatin tutorial sederhananya : Tutorial 1. Tutorial 2.
www.academia.edu/People/Matlab?page=721   Cached
Matlab. People 18,410. Documents 649. Journals 0. Jobs 0. Related Research Interests. Matlab Programming. 3,102. Matlab & Simulink programming. 1,396. Modeling and ...
www.pdfsdocuments2.com/m/30/matlab-code-for-sapi-speech...
Title: Matlab Code For Sapi Speech To Text Keywords: Matlab Code For Sapi Speech To Text Created Date: 11/3/2014 2:13:16 PM
jasapembuatantesisilmukomputer.blogspot.com/2013/07/ide...   Cached
Jul 18, 2013 · Ide Judul Tesis Skripsi Informatika Teknik kompilasi. An efficient probabilistic context-free parsing algorithm that computes prefix probabilities
viplab.if.its.ac.id/index.php/category/tutorial-matlab   Cached
Research Group of Vision and Image Processing "Laboratory of Vision, Image Processing, and Graphics, Jurusan Teknik Informatika, ITS, Surabaya"
www.kaskus.co.id/.../teknik-informatika--informatics.../245   Cached
ada yang tau cara membuat fuzzy momdani mom dgan program matlab or java ?
www.skripsitesisinformatika.blog.com/list-judul   Cached
Implementasi Teknologi VRML untuk Pemodelan Gerhana Matahari Menggunakan Matlab; ... Jasa tugas akhir , skripsi , tesis teknik informatika no 1 di Indonesia .
cutfadliyati.blogspot.com/2013/05/belajar-matlab.html   Cached
Teknik Informatika (10) Blog ... coding matlab untuk mencari metode bisection..nie dya sya share untuk memudahkan teman2 dalam belajar bahasa pemograman Matlab ...
simanmendrofa.blogspot.com/2013/01/profil-dan-biodata...   Cached
Jan 15, 2013 · Matlab (2) Motivasi (4) Novel (5) ... Profil dan Biodata, Serta Foto Seksi dan Cantik Lee Da Hae ... 2013 Teknik Informatika.
en.pudn.com/downloads255/sourcecode/math/detail1177695...   Cached
[watermark_matlab.rar] - digital watermarking algorithm to achieve the Matlab code debugging through the use of Matlab, ... Database kamus Teknik Informatika
icha-naibaho.blogspot.com/...skripsi-teknik-informatika...   Cached
Jan 14, 2011 · ... [Daubechies, molet, meyer] using matlab ... # Simulasi sistem pengarsipan [dokumentasi skripsi] di Teknik Informatika Universitas Sanata Dharma
booksreadr.org/doc/matlab-code-tabu-search   Cached
Matlab Code Tabu Search downloads at Booksreadr.org - Download free doc files,ebooks and documents - CEE 509/COM S 574 Heuristic Methods for Optimization
www.scribd.com/doc/217914724/49649010-Tugas...
49649010 Tugas Program Perceptron Dengan Matlab - Download as PDF File (.pdf), Text file (.txt) or read online.
juduljudulskripsi.blogspot.com/2009/...teknik-informatika...
Dec 25, 2009 · 10 Judul Skripsi Teknik Informatika tentang Aplikasi Portal dan SMS Gateway ... 9.APLIKASI PENGENALAN WAJAH MENGGUNAKAN FUNGSI JARAK EUCLIDEAN PADA MATLAB
simanmendrofa.blogspot.com/2013/05/contoh-aplikasi...   Cached
May 09, 2013 · Contoh Aplikasi Program Algoritma Kriptografi Vigenere Cipher dan Transposisi Menggunakan Matlab 7.4 Dengan GUI
seehow.co/numerical-integration-matlab-code-3.htm
Looking for numerical integration matlab code? Simply read on. At last, you will find out result for numerical integration matlab code. Get It Now!
rianfartawijaya.blogspot.com/2014/05/...matlab-r2010a.html   Cached
May 10, 2014 · Oke langsung saja kita mulai melakukan penginstalan matlab R2010a ini, dan pastikan kamu telah terlebih daulu memiki cd installer atau software matlabnya.
www.pdfsdocuments.com/...multicast-routing-matlab-code.pdf
Title: Aco Algorithm For Multicast Routing Matlab Code Keywords: Aco Algorithm For Multicast Routing Matlab Code Created Date: 9/5/2014 1:22:58 PM
jasapembuatantesisilmukomputer.blogspot.com/...skripsi...   Cached
Ide Judul Tesis Skripsi Mobile Application. Make Gravity Visible : A social movement to challenge our society to move more. Community based testing
viplab.if.its.ac.id/index.php/category/tutorial   Cached
Research Group of Vision and Image Processing "Laboratory of Vision, Image Processing, and Graphics, Jurusan Teknik Informatika, ITS, Surabaya"
www.pdfsdocuments.com/subtractive-clustering-matlab-code.pdf
Subtractive Clustering Matlab Code.pdf ... http://chosjulianto.files.wordpress.com/2012/12/free-download-skripsi-teknik-informatika.doc Pemetaan Hierarki ...
news-taxes.rhcloud.com/read/matlab-programs-upt
Matlab programs chapter 16 161 introduction matlab stands for matrix laboratory it is a technical ... Read more on Jurusan teknik informatika institut teknologi ...
lecturer.d3ti.mipa.uns.ac.id/hartatik/files/2014/02/bab...
KOMPUTASI MATEMATIKA MATHEMATICA DAN MATLAB Hartatik,M.Si dan Tim DIII TEKNIK INFORMATIKA | FMIPA UNS 3 1.2 Memulai Program Komputasi (Mathematica dan Matlab)
skripsi-teknik-infomatika.blogspot.com/2011/02/contoh...   Cached
Feb 09, 2011 · Contoh Skripsi Teknik InformatikaSkripsi Teknik InformatikaContoh Skripsi Teknik Informatika. ... JavaScript JScript Lingo MATLAB Perl PHP PostScript ...
booksreadr.org/doc/code-matlab-tabu-search   Cached
Code Matlab Tabu Search downloads at Booksreadr.org - Download free doc files,ebooks and documents - CEE 509/COM S 574 Heuristic Methods for Optimization
pdfcrop.in/ebook/title/letters-of-iqbal-to-jinnah-by...   Cached
matlab mobile on ipad pdf; 2006 gmc c5500 tcm location pdf; ... jurnal manajemen teknik informatika pdf; mr slim p5 error code pdf; next to you pdf; is guvenligi pdf;
kuliah2008.blogspot.com/...mathworks-matlab-r2011a-full.html   Cached
KULIAH TEKNIK INFORMATIKA 2008. Beranda; Jasa; Tutorial; Source Code; ... Mathworks Matlab R2011a ini adalah software yang digunakan untuk menyelesaikan masalah ...
kailuccanoenoe.blogspot.com   Cached
Tugas Konsep Sistem Informasi Nama : Rizka Fajar Nugraha Kelas : TI 08 B NIM : 08.11.0723 “STIMIK AMIKOM” Purwokerto 2009 Dasar-dasar Pemrograman Matlab
www.linkedin.com/pub/mery-89/40/b3b/850
Teknik Informatika. 2007 – 2011. View full profile. Background. Summary. Skill IT : Pemrograman Aplikasi • Java • C#.net • C / C++ • Matlab Pemrograman Web ...
teknikinformatika-joglosmart.blogspot.com   Cached
Teknik Informatika Minggu, 25 Januari 2009. kalkulus 1. ... (Matlab) 1 (0-1) A.2.5.1021. TEKNIK KOMPILASI. 3 (3-0) A.2.5.1022. RISET TEKNOLOGI INFORMASI. 2 (2-0) A.2 ...
ml.scribd.com/doc/252296308/Firman-Dasarmatlab   Cached
Matlab merupakan bahasa pemrograman yang hadir dengan fungsi dan ... Teknik Informatika-Institut Teknologi Sepuluh Nopember Surabaya pada tahun ...
jasatugasakhirinformatika.blogspot.com  › tesis
Feb 05, 2013 · Contoh Tugas Akhir Teknik Informatika Skripsi atau tugas akhir (TA) merupakan salah satu syarat wajib yang harus ditempuh oleh semua mahasiswa supaya bisa ...
www.linkedin.com/in/ilhammuhfirdaus21
Matlab; Event Planning; AutoCAD; Time Management; See 6+ See less; Education. Universitas Teknologi Yogyakarta sarjana teknik, Teknik Informatika 2013 – 2020 (expected)
jasaskripsiinformatika.blogspot.com  › tugas akhir
Feb 23, 2013 · Anda bisa melakukan konsultasi tentang Makalah Skripsi Teknik Informatika melalui ... J2ME JavaScript JScript Lingo MATLAB Perl PHP PostScript Python ...
heruprabowo23.blogspot.com   Cached
Teknik Informatika Rabu, 23 Mei 2012. ENKRIPSI (Encryption) ... Pada MATLAB terdapat banyak sekali cara yang dapat dilakukan untuk melakukan proses konvolusi.
www.lintasinformatika.com  › …  › Ebook  › Materi Kuliah
Kumpulan Modul Belajar MatLab Lengkap Lintas Informatika - Pada mata kuliah saya Alajabar Linier dan Data Mining, ada aplikasi yang sering digunakan oleh mahasiswa ...
belajar-ilmu-komputer.blogspot.com/...matlab-7-pada...7.html   Cached
Saya sendiri belum begitu tahu manfaat dan fungsi dari Matlab itu sendiri, namun saya diminta tolong oleh salah seorang mahasiswa Teknik Informatika untuk menginstall ...
kimzetty.blogspot.com/2013/01/cara-install-matlab-7-pada...   Cached
Jan 09, 2013 · Saya sendiri belum begitu tahu manfaat dan fungsi dari Matlab itu sendiri, namun saya diminta tolong oleh salah seorang mahasiswa Teknik Informatika untuk ...
socs.binus.ac.id/2012/05/08/matlab-and-simulink-webinar   Cached
MATLAB and Simulink Webinar. May 8, 2012 ... Tutoring Kalkulus II di SAC (Jurusan Teknik Informatika) Kamis, 16-10-14, 15.20-17.00 di Ruang 508 BINUS University.
kailuccanoenoe.blogspot.com/2009/03/konsep-sistem-inform...   Cached
Mar 30, 2009 · Tugas Konsep Sistem Informasi Nama : Rizka Fajar Nugraha Kelas : TI 08 B NIM : 08.11.0723 “STIMIK AMIKOM” Purwokerto 2009 Dasar-dasar Pemrograman Matlab
jurnal.darmajaya.ac.id/index.php/JurnalInformatika/...   Cached
PREDIKSI DAYA SERAP PERUSAHAAN TERHADAP ALUMNI TEKNIK INFORMATIKA IBI DARMAJAYA ... This data will be put into the prediction system used Matlab v6.0. The key ...
jasatugasakhirinformatika.blogspot.com  › tesis
Feb 01, 2013 · Contoh Tugas Akhir Teknik Informatika S1 #5 laporan maranatha STUDI Universitas SDN 1 maranatha AKHIR Kandaga, yang Felix blog. UNTUK untuk Program UPN ...
jasaskripsiinformatika.blogspot.com  › Pendidikan
Feb 23, 2012 · Download Contoh Skripsi TI (Teknik Informatika) S1JASA SKRIPSI INFORMATIKADownload Contoh Skripsi TI (Teknik Informatika) S1
sayfudinblogz.blogspot.com   Cached
Luntas Ilmu merupakan situs tempat belajar teknik informatika atau Teknologi informasi masa kini.Dimana ... Matriks dan vector adalah jantung dari komputasi matlab.
ti-dasar.lab.gunadarma.ac.id   Cached
Penerimaan Asisten Baru Laboratorium Informatika ATA 2014/2015 [ NEW ] Pengumuman Asisten Baru LABTI Kalimalang 2014 [ NEW ] Batas Akhir Pengambilan KRS Ganjil (PTA ...
informatika.stei.itb.ac.id/~rinaldi.munir/MetNum/2004...
Matlab/Maple dapat digunakan dalam dua mode: mode command line atau mode batch file. ... Departemen Teknik Informatika Author: Departemen Teknik Informatika
www.sitestatr.com/...teknik-informatika-menggunakan-matlab   Cached
Anda ingin download daftar judul tesis dan skripsi terbaru dan lengkap silahkan klik download Bagi Mahasiswa yang akan menyusun skripsi tesis atau pun mendapat …
Also Try



Tidak ada komentar:

Posting Komentar